Cyclic and lift closures for k...21-avoiding permutations

نویسنده

  • Jean-Luc Baril
چکیده

We prove that the cyclic closure of the permutation class avoiding the pattern k(k− 1) . . . 21 is finitely based. The minimal length of a minimal permutation is 2k − 1 and these basis permutations are enumerated by (2k− 1).ck where ck is the kth Catalan number. We also define lift operations and give similar results. Finally, we consider the toric closure of a class and we propose some open problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Refinement of Wilf-equivalence for Permutations

Recently, Dokos et al. conjectured that for all k,m > 1, the patterns 12 . . . k(k+ m+ 1) . . . (k + 2)(k + 1) and (m+ 1)(m+ 2) . . . (k +m+ 1)m. . . 21 are maj-Wilfequivalent. In this paper, we confirm this conjecture for all k > 1 and m = 1. In fact, we construct a descent set preserving bijection between 12 . . . k(k−1)-avoiding permutations and 23 . . . k1-avoiding permutations for all k > ...

متن کامل

Cyclically closed pattern classes of permutations

The cyclic closure of a permutation pattern class is defined as the set of all the cyclic rotations of its permutations. Examples of finitely based classes whose cyclic closure is also finitely based are given, as well as an example where the cyclic closure is not finitely based. Some enumerations of cyclic closures are computed.

متن کامل

AVOIDANCE OF PARTIALLY ORDERED PATTERNS OF THE FORM k-σ-k

Sergey Kitaev [4] has shown that the exponential generating function for permutations avoiding the generalized pattern σ-k, where σ is a pattern without dashes and k is one greater than the largest element in σ, is determined by the exponential generating function for permutations avoiding σ. We show that the exponential generating function for permutations avoiding the partially ordered patter...

متن کامل

Generating-tree isomorphisms for pattern-avoiding involutions∗

We show that for k ≥ 5 and the permutations τk = (k − 1)k(k − 2) . . . 312 and Jk = k(k − 1) . . . 21, the generating tree for involutions avoiding the pattern τk is isomorphic to the generating tree for involutions avoiding the pattern Jk. This implies a family of Wilf equivalences for pattern avoidance by involutions; at least the first member of this family cannot follow from any type of pre...

متن کامل

Pattern Avoidance in Permutations: Linear and Cyclic Orders

We generalize the notion of pattern avoidance to arbitrary functions on ordered sets, and consider specifically three scenarios for permutations: linear, cyclic and hybrid, the first one corresponding to classical permutation avoidance. The cyclic modification allows for circular shifts in the entries. Using two bijections, both ascribable to both Deutsch and Krattenthaler independently, we sin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011